10. Controller Implementation EN2142 Electronic Control Systems

Dr. Rohan Munasinghe BSc, MSc, PhD, MIEEE Department of Electronic and Telecommunication Engineering Faculty of Engineering University of Moratuwa 10400

Controller Transfer Function

Controller Implementation (Analog)

• How can the controller be physically implemented ?

OP Amps in Controller Design

OP Amps in Controller Design

OP Amps in Controller Design

$$C\frac{dv_i(t)}{dt} + \frac{v_o(t)}{R} = 0$$

$$CsV_i(s) + \frac{1}{R}V_0(s) = 0$$

$$\frac{V_o(s)}{V_i(s)} = -RC.s$$

$v = \frac{R_4}{R_4 + R_F} v_c$ KCL $\frac{v_1 - v}{R_1} + \frac{v_2 - v}{R_2} + \frac{v_0 - v}{R_3} = 0$ $\frac{v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_o}{R_3} - \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2}\right)v = 0$

 \sim

 $-\frac{V_1}{M}$ -m

Adder

$$\frac{v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_o}{R_3} - \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right) \left(\frac{R_4}{R_4 + R_5}\right) v_o = 0$$

OP Amps in Controller Design

• Select $R_1 = R_2 = R_3 = R$

$$\frac{v_1 + v_2}{R} + \left(\frac{1}{R} - \frac{3}{R}\frac{R_4}{R_4 + R_5}\right)v_o = 0$$

• Further select $R_4 = R$ and $R_5 = 2R$

$$\frac{v_1 + v_2}{R} + \left(\frac{1}{R} - \frac{3}{R}\frac{2R}{3R}\right)v_o = 0$$

$$\frac{v_1 + v_2}{R} + \left(\frac{1}{R} - \frac{2}{R}\right)v_o = 0$$

$$v_1 + v_2 = v_0$$

$$V_1(s) + V_2(s) = V_o(s)$$

OP Amps in Controller Design

Example: Analog Controller

• Implement the analog controller

Controller transfer function

$$\frac{U(s)}{E(s)} = \frac{(s+0.95)}{(s+0.1)} 1.85 \frac{(s+10.8)}{(s+37)} 129.3$$

$$= \frac{239.2(s^2+11.75s+10.26)}{s^2+37.1s+3.7}$$

$$= \frac{64.6(s^2+11.75s+10.26)}{0.27s^2+10.03+1}$$

$$U(s) = 64.6[s^2+11.75s+10.26]E(s) - [0.27s^2+10.03s]U(s)$$

Example: Analog Controller

Example: Analog Controller

Digital Control : Digital Redesign

• Analog Controller => Discrete approximation

Sampler and ZoH

Sampler

Continuous response is sampled at T intervals. $y(t) \Rightarrow y(k)$ then discrete controller can accept the feedback y(k)

Zero Order Hold

holds discrete control input for a period of T till next control input arrives. $u(k) \Rightarrow u(t)$ then u(t) can actuate the continuous plant G(s)

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} u_{k} \\ u_{k-1} \\ u_{k-2} \end{array} & \begin{array}{c} \cdot & \text{Newton Backward difference method} \end{array} \\ \begin{array}{c} u_{k} \\ u_{k-2} \\ u_{k-2} \end{array} & \begin{array}{c} u_{k} \\ u_{k-2} \\ u_{k-2} \\ u_{k-2} \\ u_{k-2} \\ u_{k-2} \\ u_{k-2} \\ u_{k-1} \\ u_{k-1} \\ u_{k-1} \\ u_{k-2} \\ u_{k-1} \\ u_{k-2} \\ u_{k-1} \\ u_{k-2} \\ u_{k-2} \\ u_{k-2} \\ u_{k-1} \\ u_{k-2} \\ u_{k-2$

Digital Redesign

Analog Controller => Discrete approximation

$$C(s) = \frac{U(s)}{E(s)} = \frac{a_0 s^m + a_1 s^{m-1} + \dot{+} a_m}{b_0 s^n + b_1 s^{n-1} + \dot{+} 1}; n \ge m$$

Discrete approximations for continuous variables

Example : Digital Redesign

Digitally redesign the following analog controller $0.27 \frac{d^2 u(t)}{dt^2} + 10.3 \frac{du(t)}{dt} + u(t) = 64.6(\frac{d^2 e(t)}{dt^2} + 11.75 \frac{de(t)}{dt} + 10.26e(t))$

Discrete approximation

$$0.27 \frac{u_k - 2u_{k-1} + u_{k-2}}{T^2} = 64.6 \left(\frac{e_k - 2e_{k-1} + e_{k-2}}{T^2} + 10.3 \frac{u_k - u_{k-1}}{T} + u_k + 11.75 \frac{e_k - e_{k-1}}{T} + 10.26e_k \right)$$

$$\left(\frac{0.27}{T^2} + \frac{10.3}{T} + 1\right) u_k = 64.6 \left\{ \left(\frac{1}{T^2} + \frac{11.75}{T} + 10.26\right) e_k - \left(\frac{0.54}{T^2} + \frac{10.3}{T}\right) u_{k-1} + \frac{0.27}{T^2} u_{k-2} - \left(\frac{2}{T^2} + \frac{11.75}{T}\right) e_{k-1} + \frac{1}{T^2} e_{k-2} \right\}$$

Example : Digital Redesign

Analog- Digital Comparison

Digital control

- Easily programmable/reprogrammable in contrast to changing resisters/capacitors in analog controllers)
- Easier to implement complex control systems
- Can be integrated with remote systems through digital communication
- Detailed user interfaces are available
- Lower cost per controller

Analog control

- Simple (hardware only)
- appropriate for mass produced devices
- Fast feedback action (inner loop of control systems)
- Reliable (only hardware failures possible)

Digital Controller Implementation

Complex Control Systems

- Has many control loops, some of them are analog, and some others can be digital.
- Examples
 - Mars Rovers : 10-20 control loops
 - Aircrafts : 50+ control loops
 - Automobile : 5-20 control loops
- One controller can have digital and analog sections in it
- Controller parameters (gains) change dynamically to suit the operating conditions (Adaptive Control)
- Energy saving during operation can be done by critically damping control systems (Optimal Control)
- Energy critical applications such as space missions need to be designed with optimal controllers